#### COT 6405 Introduction to Theory of Algorithms

#### Topic 6. Heapsort (cont'd)

# Heap operations: BuildHeap

 We can build a max-heap in a bottom-up manner by running MAX-Heapify(x) as x runs through all nodes

- for  $i \leftarrow n$  downto 1 do MAX-Heapify(i)

- Order of processing guarantees that the children of node i are heaps when i is processed
- A better upper bound?

# BuildHeap

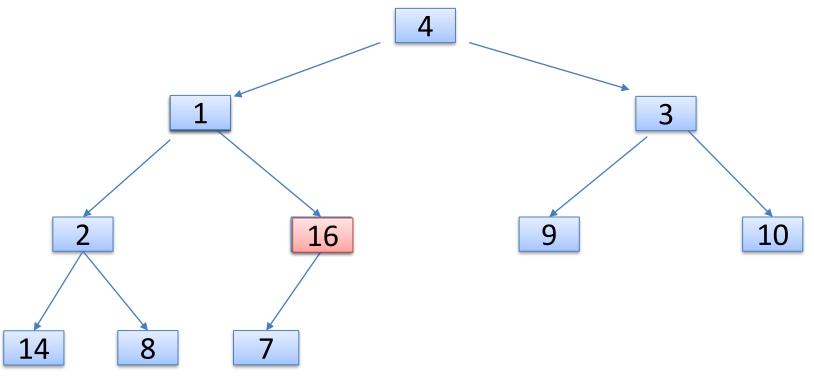
- For an array of length n, all elements in range  $A[\lfloor n/2 \rfloor + 1...n]$  are heaps (Why?)
- Walk backwards through the array from [n/2] to 1, calling MAX-Heapify() on each node.

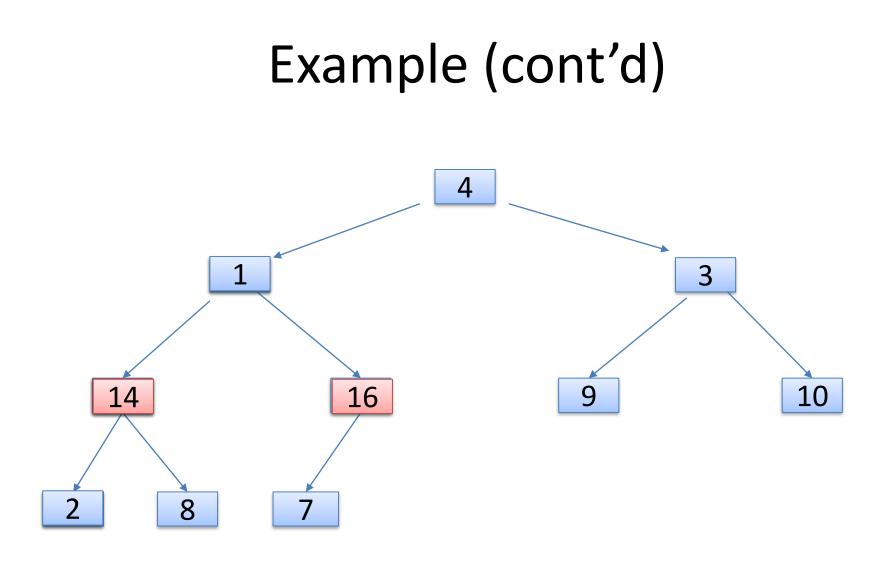
#### Build-MAX-Heap()

```
// given an unsorted array A, make A a heap
Build-MAX-Heap(A)
{
   A.heap_size = A.length;
   for (i = [A.length/2] downto 1)
    MAX-Heapify(A, i);
```

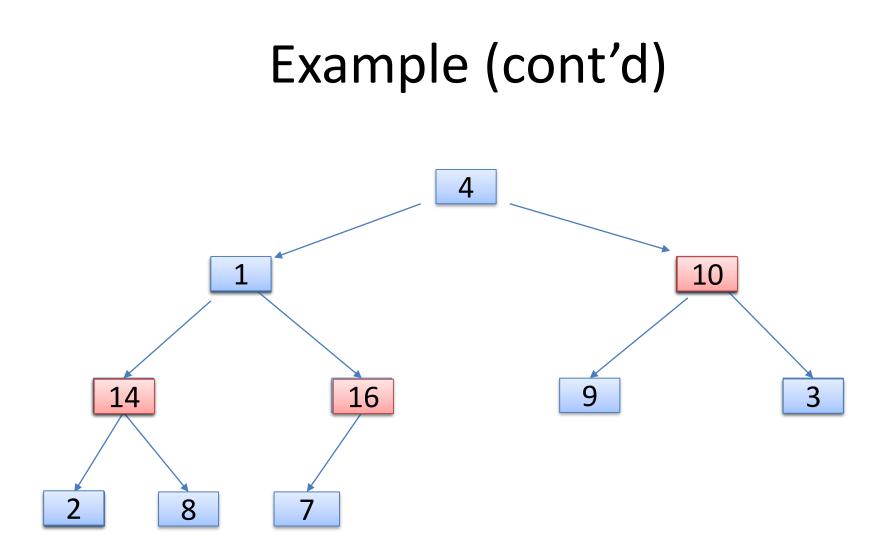
# Build-MAX-Heap() Example

- A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7} (10 elements)
- We started with i = A.length/2 = 5

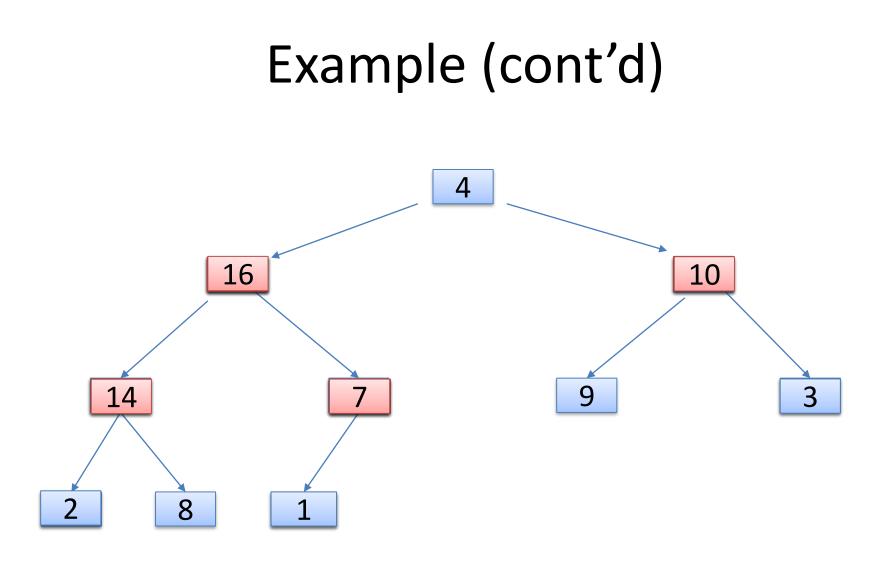




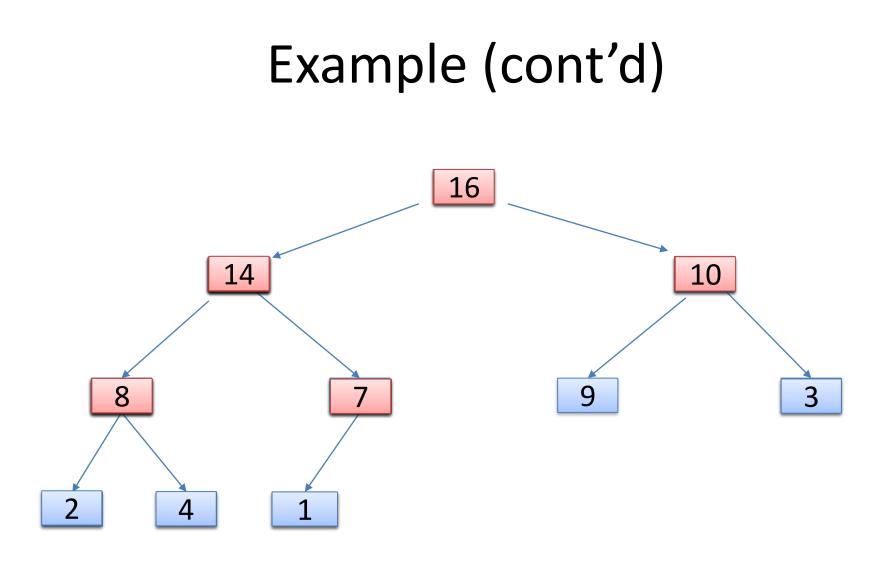
 $i = 4, A = \{4, 1, 3, 14, 16, 9, 10, 2, 8, 7\}$ 



 $i = 3, A = \{4, 1, 10, 14, 16, 9, 3, 2, 8, 7\}$ 



 $i = 2, A = \{4, 16, 10, 14, 7, 9, 3, 2, 8, 1\}$ 



 $i = 1, A = \{16, 14, 10, 8, 7, 9, 3, 2, 4, 1\}$ 

#### BUILD\_MAX\_HEAP correctness

#### Correctness

Loop invariant: At start of every iteration of for loop, each node i + 1, i + 2, ..., n is root of a max-heap.

**Initialization:** we know that each node  $\lfloor n/2 \rfloor + 1$ ,  $\lfloor n/2 \rfloor + 2$ , ..., *n* is a leaf, which is the root of a trivial max-heap. Since  $i = \lfloor n/2 \rfloor$  before the first iteration of the for loop, the invariant is initially true.

**Maintenance:** Children of node *i* are indexed higher than *i*, so by the loop invariant, they are both roots of max-heaps. Correctly assuming that i+1, i+2, ..., n are all roots of max-heaps, MAX-HEAPIFY makes node *i* a max-heap root. Decrementing *i* reestablishes the loop invariant at each iteration.

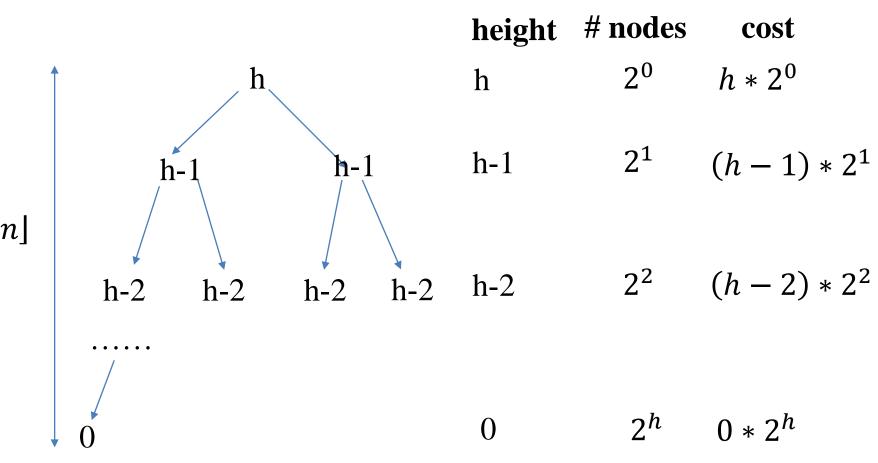
**Termination:** When i = 0, the loop terminates. By the loop invariant, each node, notably node 1, is the root of a max-heap.

# Analyzing Build-MAX-Heap

- Each call to MAX-Heapify() takes O(lg n) time
- There are O(n) such calls (specifically,  $\lfloor n/2 \rfloor$ )
- Thus the running time is O(n lg n)
- A tighter bound of Build-MAX-Heap is O(n)
  - How could this be possible?

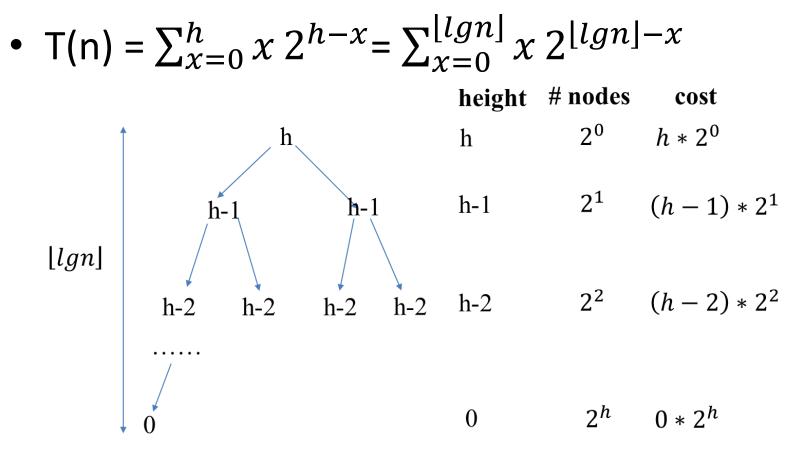
# Analyzing Build-MAX-Heap (cont'd)





# Analyzing Build-MAX-Heap (cont'd)

Adding up the costs of each level together



# Analyzing Build-MAX-Heap (cont'd)

. .

• 
$$T(n) = \sum_{x=0}^{\lfloor lgn \rfloor} x \, 2^{\lfloor lgn \rfloor - x} = \sum_{x=0}^{\lfloor lgn \rfloor} x \, \frac{2^{\lfloor lgn \rfloor}}{2^x}$$
  
$$= \sum_{x=0}^{\lfloor lgn \rfloor} x \, \frac{n}{2^x} = n \sum_{x=0}^{\lfloor lgn \rfloor} \frac{x}{2^x}$$
$$\leq n \sum_{x=0}^{\infty} \frac{x}{2^x} = 2n = O(n)$$

$$\sum_{x=0}^{\infty} \frac{x}{2^x} = \sum_{x=0}^{\infty} x \left(\frac{1}{2}\right)^x = \sum_{k=0}^{\infty} k y^k = \frac{y}{(1-y)^2} = 2$$

## Heapsort

- Given **Build-MAX-Heap()**, an in-place sorting algorithm is easily constructed:
  - Maximum element is at A[1]
  - Discard by swapping it with element at A[n]
    - Decrement A.heap\_size
    - A[n] now contains correct value
  - Restore heap property at A[1] by calling MAX Heapify()
  - Repeat, always swapping A[1] for A[A.heap\_size]

## Heapsort (cont'd)

```
Heapsort(A)
```

}

```
Build-MAX-Heap(A);
for (i = A.length downto 2)
{
   Swap(A[1], A[i]);
   A.heap_size= A.heap_size - 1;
   MAX-Heapify(A, 1);
```

{

# Heapsort (cont'd)

 Can we call MAX-Heapify(A,1) instead of Build-MAX-Heap(A) before the loop?

```
Heapsort(A)
{
    Build-MAX-Heap(A);
    for (i = A.length downto 2)
    {
        Swap(A[1], A[i]);
        A.heap_size= A.heap_size - 1;
        MAX-Heapify(A, 1);
    }
```

}

# Heapsort (cont'd)

 Can we call Build-MAX-Heap(A) instead of MAX-Heapify(A,1) inside of the loop?

```
Heapsort(A)
{
    Build-MAX-Heap(A);
    for (i = A.length downto 2)
    {
        Swap(A[1], A[i]);
        A.heap_size= A.heap_size - 1;
        MAX-Heapify(A, 1);
    }
```

}

# **Analyzing Heapsort**

- The call to Build-MAX-Heap() takes O(n) time
- Each of the (n 1) calls to MAX-Heapify() takes O(lg n) time
- Thus the total time taken by HeapSort()
   = O(n) + (n 1) O(lg n)

## Exercise

• What are the minimum and maximum number of elements in a heap of height h?

# Exercise (cont'd)

- A heap is a semi-complete binary tree, so the minimum number of elements in a heap of height h is 2<sup>h</sup> (= 2<sup>0</sup>+2<sup>1</sup>+...+2<sup>h-1</sup> + 1)
- The maximum number of elements in a heap of height h is  $2^{h+1}-1$  (=  $2^0+2^1+...+2^h$ )

#### COT 6405 Introduction to Theory of Algorithms

**Topic 7. Priority queues** 

# **Priority Queues**

- The heap data structure is incredibly useful for implementing (max-/min-) priority queues
  - A data structure for maintaining a set S of elements, each with an associated <u>value</u> or key
  - Supports the operations Insert(), Maximum(), and ExtractMax()

# **Priority Queue Operations**

- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key
- How could we implement these operations using a heap?

## **Implementing Priority Queues**

# Heap-Maximum(A) { return A[1];

}

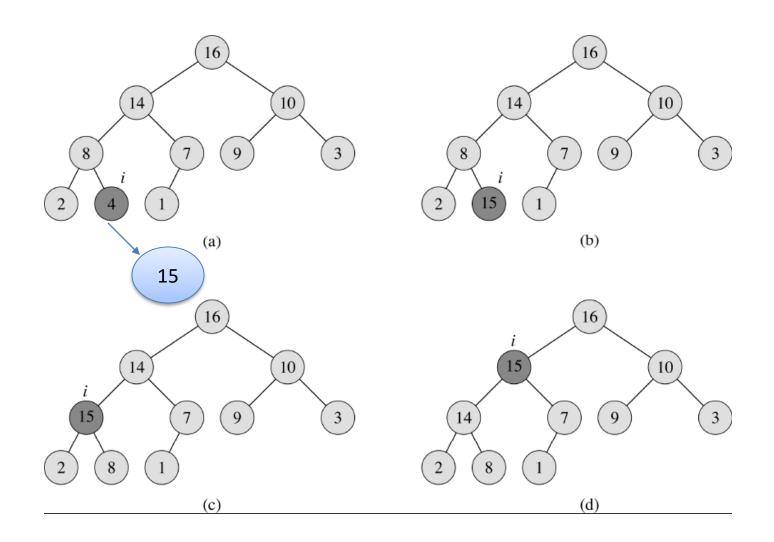
```
Implementing Priority Queues
Heap-Extract-Max(A)
{
    if(A.heap size < 1) { error; }</pre>
    \max = A[1];
    A[1] = A[A.heap size];
    A.heap size = A.heap size - 1;
    MAX-Heapify(A, 1);
    return max;
```

#### **Implementing Priority Queues**

Heap-INCREASE-KEY(A, i, key)

```
if key < A[i] {error;}
A[i]= key;
while (i>1 and A[PARENT(i)]< A[i])
    exchange(A[i], A[PARENT(i)];
    i= PARENT(i);
} what's running time?</pre>
```

#### **HEAP-INCREASE-KEY**



```
Implementing Priority Queues
Max-Heap-Insert(A, key)
{
  A.heap size = A.heap size + 1;
  A[A.heap size] = -\infty;
  Heap-INCREASE-KEY(A,A.heap size,key);
//what's running time?
```

# Building a heap by insertions

- A heap could be built by successive insertions
- How about the cost (the number of swaps)?
- lg1 + lg2 + lg3.....+lgn = lgn! = O(nlgn) (Stirling's approximation).
- This is not the optimal way to construct a heap
- Build-MAX-Heap requires O(n) swaps

# Common mistakes

- Not updating the heap when the key of a node changes.
- After extracting the maximum node, not building the heap again.

#### Exercise

 How to implement a stack by using a priority queue?

# Exercise (cont'd)

```
class Stack
      private int c = 0;
      private PriorityQueue pq;
      public void Push(int x)
         C++;
         pq.Insert(x, c); }
      public int Pop()
         C--:
         return pq.Remove(); }
```

ł

}

# About midterm

- Midterm I will cover everything we have learned so far
  - From Intro lecture to Lecture 7 (inclusive)
  - Function growth rate analysis, divide and conquer, recurrence, recursion tree and the Master Theorem, heaps, basic heap operations, priority queues.
  - 3:30pm to 4:45pm Sep 28th
  - Please be familiar with the basic concepts
  - No class on Sep 19th