
COT 6405 Introduction to Theory of
Algorithms

Topic 6. Heapsort (cont’d)

9/14/2016 1

Heap operations: BuildHeap

• We can build a max-heap in a bottom-up
manner by running MAX-Heapify(x) as x
runs through all nodes

– for i ← n downto 1 do MAX-Heapify(i)

• Order of processing guarantees that the
children of node i are heaps when i is
processed

• A better upper bound?

BuildHeap

• For an array of length n, all elements in range
A[𝑛/2 + 1. . . n] are heaps (Why?)

• Walk backwards through the array from 𝑛/2
to 1, calling MAX-Heapify() on each node.

9/14/2016 3

Build-MAX-Heap()

// given an unsorted array A, make A a heap

Build-MAX-Heap(A)

{

A.heap_size = A.length;

for (i = A.length/2 downto 1)

MAX-Heapify(A, i);

}

4

Build-MAX-Heap() Example

• A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7} (10 elements)

• We started with i = A.length/2 = 5

5

4

5 3

2 16 9 10

14 8 7

1

16

Example (cont’d)

9/14/2016 6

4

5 3

2 16 9 10

14 8 7

1

16

i = 4, A = {4, 1, 3, 14, 16, 9, 10, 2, 8, 7}

214

2

Example (cont’d)

9/14/2016 7

4

5 3

2 16 9 10

14 8 7

1

16214

2

310

3

i = 3, A = {4, 1, 10, 14, 16, 9, 3, 2, 8, 7}

Example (cont’d)

9/14/2016 8

4

5 3

2 16 9 10

14 8 7

1

16214

2

310

3

i = 2, A = {4, 16, 10, 14, 7, 9, 3, 2, 8, 1}

116

17

1

Example (cont’d)

9/14/2016 9

4

5 3

2 16 9 10

14 8 7

1

16214

2

310

3

i = 1, A = {16, 14, 10, 8, 7, 9, 3, 2, 4, 1}

116

17

1

416

414

48

4

BUILD_MAX_HEAP correctness

10

Analyzing Build-MAX-Heap

• Each call to MAX-Heapify() takes O(lg n)
time

• There are O(n) such calls (specifically, n/2)

• Thus the running time is O(n lg n)

• A tighter bound of Build-MAX-Heap is O(n)

– How could this be possible?

9/14/2016 11

Analyzing Build-MAX-Heap (cont’d)

9/14/2016 12

h

h-1 h-1

h-2 h-2

……

0

h-2h-2

𝑙𝑔𝑛

height # nodes cost

h

h-1

h-2

0

20

21

22

2ℎ

ℎ ∗ 20

ℎ − 1 ∗ 21

ℎ − 2 ∗ 22

0 ∗ 2ℎ

Analyzing Build-MAX-Heap (cont’d)

• Adding up the costs of each level together

• T(n) = σ𝑥=0
ℎ 𝑥 2ℎ−𝑥= σ𝑥=0

𝑙𝑔𝑛
𝑥 2 𝑙𝑔𝑛 −𝑥

9/14/2016 13

Analyzing Build-MAX-Heap (cont’d)

• T(n) = σ𝑥=0
𝑙𝑔𝑛

𝑥 2 𝑙𝑔𝑛 −𝑥 = σ𝑥=0
𝑙𝑔𝑛

𝑥
2 𝑙𝑔𝑛

2𝑥

=σ𝑥=0
𝑙𝑔𝑛

𝑥
𝑛

2𝑥
= nσ𝑥=0

𝑙𝑔𝑛 𝑥

2𝑥

≤ nσ𝑥=0
∞ 𝑥

2𝑥
= 2n = O(n)

σ𝑥=0
∞ 𝑥

2𝑥
= σ𝑥=0

∞ 𝑥 (
1

2
)𝑥 = σ𝑘=0

∞ 𝑘 𝑦𝑘 =
𝑦

(1−𝑦)2
= 2

9/14/2016 14

Heapsort

• Given Build-MAX-Heap(), an in-place sorting
algorithm is easily constructed:

– Maximum element is at A[1]

– Discard by swapping it with element at A[n]

• Decrement A.heap_size

• A[n] now contains correct value

– Restore heap property at A[1] by calling MAX-
Heapify()

– Repeat, always swapping A[1] for A[A.heap_size]

15

Heapsort (cont’d)
Heapsort(A)

{

Build-MAX-Heap(A);

for (i = A.length downto 2)

{

Swap(A[1], A[i]);

A.heap_size= A.heap_size - 1;

MAX-Heapify(A, 1);

}

}

16

Heapsort (cont’d)

• Can we call MAX-Heapify(A,1) instead of
Build-MAX-Heap(A) before the loop?

9/14/2016 17

Heapsort (cont’d)

• Can we call Build-MAX-Heap(A) instead of
MAX-Heapify(A,1) inside of the loop?

9/14/2016 18

Analyzing Heapsort

• The call to Build-MAX-Heap() takes O(n)
time

• Each of the (n – 1) calls to MAX-Heapify()
takes O(lg n) time

• Thus the total time taken by HeapSort()
= O(n) + (n - 1) O(lg n)

9/14/2016 19

Exercise

• What are the minimum and maximum
number of elements in a heap of height h?

9/14/2016 20

Exercise (cont’d)

• A heap is a semi-complete binary tree, so the

minimum number of elements in a heap of height h is

2ℎ (= 20+21+….+2ℎ−1 + 1)

• The maximum number of elements in a heap of

height h is 2ℎ+1-1 (= 20+21+….+2ℎ)

9/14/2016
21

5

COT 6405 Introduction to Theory of
Algorithms

Topic 7. Priority queues

9/14/2016 22

Priority Queues

• The heap data structure is incredibly useful for
implementing (max-/min-) priority queues

– A data structure for maintaining a set S of
elements, each with an associated value or key

– Supports the operations Insert(),
Maximum(), and ExtractMax()

9/14/2016 23

Priority Queue Operations

• Insert(S, x) inserts the element x into set S

• Maximum(S) returns the element of S with
the maximum key

• ExtractMax(S) removes and returns the
element of S with the maximum key

• How could we implement these operations
using a heap?

24

Implementing Priority Queues

Heap-Maximum(A)

{

return A[1];

}

25

Implementing Priority Queues

Heap-Extract-Max(A)

{

if(A.heap_size < 1) { error; }

max = A[1];

A[1] = A[A.heap_size];

A.heap_size = A.heap_size - 1;

MAX-Heapify(A, 1);

return max;

}

26

Implementing Priority Queues

Heap-INCREASE-KEY(A, i, key)

if key < A[i] {error;}

A[i]= key;

while (i>1 and A[PARENT(i)]< A[i])

exchange(A[i], A[PARENT(i)];

i= PARENT(i);

} what’s running time?

27

HEAP-INCREASE-KEY

28

15

Implementing Priority Queues

Max-Heap-Insert(A, key)

{

A.heap_size = A.heap_size + 1;

A[A.heap_size]= -∞;

Heap-INCREASE-KEY(A,A.heap_size,key);

}

//what’s running time?

29

Building a heap by insertions

• A heap could be built by successive insertions

• How about the cost (the number of swaps)?

• lg1 + lg2 + lg3…..+lgn = lgn! = O(nlgn) (Stirling’s
approximation).

• This is not the optimal way to construct a
heap

• Build-MAX-Heap requires O(n) swaps

9/14/2016 30

Common mistakes

• Not updating the heap when the key of a node
changes.

• After extracting the maximum node, not
building the heap again.

32

Exercise

• How to implement a stack by using a priority
queue?

9/14/2016 37

Exercise (cont’d)

9/14/2016 38

class Stack

{

private int c = 0;

private PriorityQueue pq;

public void Push(int x)

{

c++;

pq.Insert(x, c); }

public int Pop()

{

c--;

return pq.Remove(); }

}

About midterm

• Midterm I will cover everything we have
learned so far

– From Intro lecture to Lecture 7 (inclusive)

– Function growth rate analysis, divide and conquer,
recurrence, recursion tree and the Master
Theorem, heaps, basic heap operations, priority
queues.

– 3:30pm to 4:45pm Sep 28th

– Please be familiar with the basic concepts

– No class on Sep 19th
9/14/2016 39

